68,275 research outputs found

    Classical mappings of the symplectic model and their application to the theory of large-amplitude collective motion

    Full text link
    We study the algebra Sp(n,R) of the symplectic model, in particular for the cases n=1,2,3, in a new way. Starting from the Poisson-bracket realization we derive a set of partial differential equations for the generators as functions of classical canonical variables. We obtain a solution to these equations that represents the classical limit of a boson mapping of the algebra. The relationship to the collective dynamics is formulated as a theorem that associates the mapping with an exact solution of the time-dependent Hartree approximation. This solution determines a decoupled classical symplectic manifold, thus satisfying the criteria that define an exactly solvable model in the theory of large amplitude collective motion. The models thus obtained also provide a test of methods for constructing an approximately decoupled manifold in fully realistic cases. We show that an algorithm developed in one of our earlier works reproduces the main results of the theorem.Comment: 23 pages, LaTeX using REVTeX 3.

    Compatibility check of measured aircraft responses using kinematic equations and extended Kalman filter

    Get PDF
    An extended Kalman filter smoother and a fixed point smoother were used for estimation of the state variables in the six degree of freedom kinematic equations relating measured aircraft responses and for estimation of unknown constant bias and scale factor errors in measured data. The computing algorithm includes an analysis of residuals which can improve the filter performance and provide estimates of measurement noise characteristics for some aircraft output variables. The technique developed was demonstrated using simulated and real flight test data. Improved accuracy of measured data was obtained when the data were corrected for estimated bias errors

    Stability of the proton-to-electron mass ratio

    Full text link
    We report a limit on the fractional temporal variation of the proton-to-electron mass ratio as, obtained by comparing the frequency of a rovibrational transition in SF6 with the fundamental hyperfine transition in Cs. The SF6 transition was accessed using a CO2 laser to interrogate spatial 2-photon Ramsey fringes. The atomic transition was accessed using a primary standard controlled with a Cs fountain. This result is direct and model-free

    Further application of a semi-microscopic core-particle coupling method to the properties of Gd155,157, and Dy159

    Full text link
    In a previous paper a semi-microscopic core-particle coupling method that includes the conventional strong coupling core-particle model as a limiting case, was applied to spectra and electromagnetic properties of several well-deformed odd nuclei. This work, coupled a large single-particle space to the ground state bands of the neighboring even cores. In this paper, we generalize the theory to include excited bands of the cores, such as beta and gamma bands, and thereby show that the resulting theory can account for the location and structure of all bands up to about 1.5 MeV.Comment: 15 pages including 9 figure(postscript), submitted to Phys.Rev.

    Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing

    Get PDF
    Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the large-angle pointing performance

    Gifford-McMahon refrigerator with split cold head

    Get PDF
    Leybold-Heraeus Co. have developed, built and successfully tested a Gifford-McMahon cryocooler with splitted cold head for cooling a cryopump. The refrigerating part of the cold head and the gas flow control device have been separated (splitted cold head) and the distance between them is bridged by only two thin lines for carrying the working gas. Due to this separation the size of the refrigerating part is virtually defined only by the size of the displacers whilst the gas flow control device can be of any desired design. It has been shown that dimensioning of the connecting lines and the corresponding losses became less critical with increasing size of the expander, but additional cooling in proportion to the refrigerating capacity is required

    Aspects of Coulomb Dissociation and Interference in Peripheral Nucleus-Nucleus Collisions

    Full text link
    Coherent vector meson production in peripheral nucleus-nucleus collisions is discussed. These interactions may occur for impact parameters much larger than the sum of the nuclear radii. Since the vector meson production is always localized to one of the nuclei, the system acts as a two-source interferometer in the transverse plane. By tagging the outgoing nuclei for Coulomb dissociation it is possible to obtain a measure of the impact parameter and thus the source separation in the interferometer. This is of particular interest since the life-time of the vector mesons are generally much shorter than the impact parameters of the collisions.Comment: 10 pages, 4 figures, Presented at the Workshop on Electromagnetic Probes of Fundamental Physics, Erice, Italy, 16-21 October, 200
    • …
    corecore